24x^2+56x+4=0

Simple and best practice solution for 24x^2+56x+4=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 24x^2+56x+4=0 equation:


Simplifying
24x2 + 56x + 4 = 0

Reorder the terms:
4 + 56x + 24x2 = 0

Solving
4 + 56x + 24x2 = 0

Solving for variable 'x'.

Factor out the Greatest Common Factor (GCF), '4'.
4(1 + 14x + 6x2) = 0

Ignore the factor 4.

Subproblem 1

Set the factor '(1 + 14x + 6x2)' equal to zero and attempt to solve: Simplifying 1 + 14x + 6x2 = 0 Solving 1 + 14x + 6x2 = 0 Begin completing the square. Divide all terms by 6 the coefficient of the squared term: Divide each side by '6'. 0.1666666667 + 2.333333333x + x2 = 0 Move the constant term to the right: Add '-0.1666666667' to each side of the equation. 0.1666666667 + 2.333333333x + -0.1666666667 + x2 = 0 + -0.1666666667 Reorder the terms: 0.1666666667 + -0.1666666667 + 2.333333333x + x2 = 0 + -0.1666666667 Combine like terms: 0.1666666667 + -0.1666666667 = 0.0000000000 0.0000000000 + 2.333333333x + x2 = 0 + -0.1666666667 2.333333333x + x2 = 0 + -0.1666666667 Combine like terms: 0 + -0.1666666667 = -0.1666666667 2.333333333x + x2 = -0.1666666667 The x term is 2.333333333x. Take half its coefficient (1.166666667). Square it (1.361111112) and add it to both sides. Add '1.361111112' to each side of the equation. 2.333333333x + 1.361111112 + x2 = -0.1666666667 + 1.361111112 Reorder the terms: 1.361111112 + 2.333333333x + x2 = -0.1666666667 + 1.361111112 Combine like terms: -0.1666666667 + 1.361111112 = 1.1944444453 1.361111112 + 2.333333333x + x2 = 1.1944444453 Factor a perfect square on the left side: (x + 1.166666667)(x + 1.166666667) = 1.1944444453 Calculate the square root of the right side: 1.092906421 Break this problem into two subproblems by setting (x + 1.166666667) equal to 1.092906421 and -1.092906421.

Subproblem 1

x + 1.166666667 = 1.092906421 Simplifying x + 1.166666667 = 1.092906421 Reorder the terms: 1.166666667 + x = 1.092906421 Solving 1.166666667 + x = 1.092906421 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.166666667' to each side of the equation. 1.166666667 + -1.166666667 + x = 1.092906421 + -1.166666667 Combine like terms: 1.166666667 + -1.166666667 = 0.000000000 0.000000000 + x = 1.092906421 + -1.166666667 x = 1.092906421 + -1.166666667 Combine like terms: 1.092906421 + -1.166666667 = -0.073760246 x = -0.073760246 Simplifying x = -0.073760246

Subproblem 2

x + 1.166666667 = -1.092906421 Simplifying x + 1.166666667 = -1.092906421 Reorder the terms: 1.166666667 + x = -1.092906421 Solving 1.166666667 + x = -1.092906421 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.166666667' to each side of the equation. 1.166666667 + -1.166666667 + x = -1.092906421 + -1.166666667 Combine like terms: 1.166666667 + -1.166666667 = 0.000000000 0.000000000 + x = -1.092906421 + -1.166666667 x = -1.092906421 + -1.166666667 Combine like terms: -1.092906421 + -1.166666667 = -2.259573088 x = -2.259573088 Simplifying x = -2.259573088

Solution

The solution to the problem is based on the solutions from the subproblems. x = {-0.073760246, -2.259573088}

Solution

x = {-0.073760246, -2.259573088}

See similar equations:

| 3x-2(x+1)=4x-3 | | (3.6)x=(1.5)(8.314)(301) | | ln(x+7)= | | 7x-4=180 | | 5(4r+1)-10r=4(2r-3)+15 | | -1-7(8n+4)= | | 17-(3x-17)=7 | | (1.8)(42.1)/x=(2.8)(35.5) | | -(3x-4)+17-6=3(-9+6x-2)+5 | | 486=11 | | 7x+8=10x+1 | | (2.4)(7.9)/x=387 | | K=10C+273 | | 3.5x/9.3=244 | | 2x+13=5+4x | | 6x^2+1=5-0.25x^2 | | 12/x=34.2/71.7 | | 85=10-2.5 | | 2(4-7x)=8 | | 5n-3n-2n=17-2+9 | | 10-x=3-2x+4-2x | | 0.5(20g-3)= | | u=wv+t | | 8-2x=4-x | | 2x^2=36x+64 | | 5r-3r+2=5r-r | | sqrt(4-3x)=x | | 1/16=3/6 | | 9=4(3x-2)-2x-3x | | (4x^2+3x-3)+(4x^2+7x+15)-(8x^2-18)= | | 1/(x^2-4) | | .4(x+200)=900 |

Equations solver categories